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1. What's in a brain? Crash course in (visual) neuroscience:
Cortical Hierarchy
Receptive fields
Selectivities (features, object, classes)
Concept cells

2. What'sina CNN? Deepdream, visualization (explainability/interpretability) tools, examples...

3. Brain/CNN comparisons:
RSA (representational similarity analysis): fMRI, MEG, single-units
Brainscore
Case study: CLIP-multimodal

4. Otherissues about the biological plausibility of Deep Learning:
Spikes

Adversarial attacks

Backprop

Attention/transformers

Recurrence...
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1. What’S |n a bra|n? Crash course in (visual) neuroscience

e Cortical hierarchy HC
[BA3E} —{BAdEL
T | j ! Latency
A — }
IE[‘;TPﬂ ] | A ~100 ms
T |
[ TP
BATB [BA7a] == STERI 11 et ~90 ms
‘ =TT ij i i f Ill . =
_-iin= : ; !
VP e UP =i MeTd, HMST TFSTHH [PITe ~80 ms
i e L%Fﬂ' [
I -1
i I == :
1 — | = ~70ms
: (11 | |
[MDP} [MIP ] { PO | [ MF|| 1 :i \4|l i.. _];ﬂl V4
|
— 5 ' - ~60 ms
\_PiF_J ' [ VIGA |
Retina LGN Nrs: . HoE
] | ==l ~50ms
[ - LV
] 1 | :
a Mli V2 [P-BIPI] ~40ms




1. What’S |n a bra|n? Crash course in (visual) neuroscience

e (Cortical hierarchy
e Receptive fields
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1. What’S |n a bra|n? Crash course in (visual) neuroscience

e Cortical hierarchy
e Receptive fields

e Selectivities (features,

objects, classes)

objects categories

&GQv (w;&‘

complex shapes object components

\\ UI/ 9
V4

complex geometric patterns
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luminance contrast VanRullen, J Phys Paris (2003)




1. What’S |n a bra|n? Crash course in (visual) neuroscience

e (Cortical hierarchy How is feature selectivity constructed?

e Receptive fields Example for an orientation detector (V1)

() Select|V|t|eS (featu res’ Retinal ganglion cell receptive fields
objects, classes) Ex5 kemel QOO® OO

3 channels
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Repeating this pattern across the visual field:
~equivalent to convolution operation

Cortical
simple cells
(AND function)

Cortical simple cell receptive fields




1. What’S |n a bra|n? Crash course in (visual) neuroscience

e Cortical hierarchy More elaborate selectivities:
e Receptive fields contours, textures, shapes (V2, V4)

e Selectivities (features,

. Coarse, Directional, Regular Fine, Directional, Regular
objects, classes) . %/,E: ‘" H
Brick Sandwave  Low SF grating Lid sin Oriental grass High 5F grating
fiber cloth

Coarse, Directional, Irregular Fine, Directional, Irregular

Marble Rock Snow Bark Straw
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Coarse, Non-directional, Regular Flne, Non-directional, Regular
- m ' 7
Dried 'Flowers Paper chip Leopard Coffee beans Spiral weave

Coarse, Non-dlrectional Irreular Fine, Non-directional, Irregular
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Cracked ground Wrinkled cloth European marble  Expanded mica Wood grain

Kim, Bair & Pasupathy, J Neurosci (2019)



1. What’S |n a bra|n? Crash course in (visual) neuroscience

e (Cortical hierarchy Even more elaborate selectivities:
e Receptive fields object parts, shapes, classes (IT)

e Selectivities (features,
objects, classes)

Tanaka, Annual Rev. Neurosci (1996)




1. What’S |n a bra|n? Crash course in (visual) neuroscience

° CO rti Ca I h ie ra rc hy A expsetri:a?tal representational pattern representat::z:li:issimilarity multiglr:l?::ional
e Receptive fields
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The big picture
Beyond single-unit preferences:
population-level representations

(IT)

faces bodies objects places

Charest et al, PNAS (2014)




1. What’S |n a bra|n? Crash course in (visual) neuroscience

e (Cortical hierarchy Still more elaborate selectivities:

* Receptive fields concept cells (Hippocampus)

« Selectivities (features, => Are these « grandmother » neurons?
objects, classes) The "Jerwiior Anision neuro.

Response of one nenne cell in one pathend to 7 different pictures of the aciress Jennifar Anislon
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The “HaBe Berry neuron®.
Response of another nenve cell in another patent b 9 different pictunes of the actress Halle Barmny.
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Quiroga, Reddy et al, Nature (2005)



1. What’S |n a bra|n? Crash course in (visual) neuroscience

» Cortical hierarchy

e Receptive fields

o Selectivities (features, objects, classes)
* Concept cells




2. What'sin a CNN?

e Hierarchical structure

InceptionV1 3a 3b 4a 4b Ac Ad 4e 5a 5b

GoogleNet 3a 3b 43 4b 4c 4d 4e 5a 5b




2. What'sin a CNN?

. . . InceptionV3 mm
e Convolutions + Receptive Fields — T

Conv2d_2a_3x3 7
ResNet50 Conv2d_2b_3x3 11
MaxPool_3a_3x3 15
Conv2d_3b_1x1 15
resnet_v1_50/block1 35 Conv2d_4a_3x3 23
MaxPool_5a_3x3 31
resnet_v1_50/block2 99 Mixed_5b 63
ImageNet: 224x224 pixels Mixed_5c 95
3x3 35x35 resnet_v1_50/block3 291 Vixed_5 197
resnet_v1_50/block4 483 ed-oe 199
Mixed_6b 351
Mixed_6c 543
Mixed_6d 735
Mixed_6e 927
Mixed_7a 1055
Mixed_7b 1183
Mixed_7c 1311



2. What’'sina CNN?

* CNNs are (roughly) biologically plausible:
 Hierarchical structure
e Convolutions
e Receptive fields
* Feature/object selectivity?




2. What’'sina CNN?

* How to peek within the black box?

e Deepdream




2. What’'sina CNN?

* How to peek within the black box?

* Deepdream - across layers of GoogleNet




2. What’'sina CNN?

* How to peek within the black box?

* How does Deepdream (and feature visualization) work?

=>» Gradient descent on image (starting from noise, or from a given image)

=>» with a neuron/channel/layer activation as the objective function to maximize
=>» possibly with priors/regularization to impose constraints on images

Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixedd4a, unit 11).

=N '

Step 0




2. What’'sina CNN?

* How to peek within the black box?

* How does Deepdream (and feature visualization) work?

=>» Gradient descent on image (starting from noise, or from a given image)

=>» with a neuron/channel/layer activation as the objective function to maximize
=>» possibly with priors/regularization to impose constraints on images

Different optimization
objectives show what
different parts of a
netwaork are looking for.

n layer index
x,y spatial position
z channel index

E class index

Meuron Channel Layer/Deeplream

e e e | T =erm [ N -1 mrrm [ o 1 T
layer X, ¥,2] layer Ll si,2] layer lipirs

pre - softmax[k] softmax[k]



2. What’'sina CNN?

* How to peek within the black box?

* How does Deepdream (and feature visualization) work?

=>» Gradient descent on image (starting from noise, or from a given image)

=>» with a neuron/channel/layer activation as the objective function to maximize
=>» possibly with priors/regularization to impose constraints on images

No regularization

Step 1

Full regularization



2. What’'sina CNN?

Weak Regularization avoids Strong Regularization gives
misleading correlations, but is more reall;tp: “::amplgs at risk
less connected to real use. of misleading correlations.

Unregularized Frequency Transformation Learned Dataset
Penalization Robustness Prior Examples
Erhan, et al., 2009 =

Introduced core idea. Minimal
regularization.

Szegedy, et al., 2013 [11]
Acversarial examples. Visualizes with
dataset examples.

Mahendran & Vedaldi, 2015 [7]
Introduces total variation regularizer.
Reconstructs input from representation.

Nguyen, et al., 2015 [14]

Explores counterexamples. Introduces
image blurring.

Mordvintsev, et al., 2015 4]

Introduced jitter & multi-scale. Explored
GMM priors for classes.

@ygard, et al., 2015 [15]
Introduces gradient blurring.
(Also uses jitter.)

Tyka, et al., 2016 [16]
Reqularizes with bilateral filters,
{Also uses jitter.)

Mordvintsev, et al., 2016 [17]
Normalizes gradient frequencies.
{Also uses jitter.)

Nguyen, et al., 2016 [18]
Paramaterizes images with GAN
generator,

Nguyen, et al., 2016 [10]
Uses denoising autoencoder prior to

make a generative model.




2. What’'sina CNN?

* How to peek within the black box?

(Every image in this section can be reproduced with the notebooks available at https://github.com/tensorflow/lucid)
(I also strongly recommend exploring some pre-computed visualizations at https://microscope.openai.com/models)

Feature Visualization

How neural networks build up their understanding of images

T
i

5

e B

Rl

it

1) 4:’
b o

S\

Edges (layer convZdd) Textures (layer mixed3a) Patterns (layer mixed4da) Pa

e e [

Feature visualization allows us to see how GoogleMet[1], trained on the ImageMet[2] dataset, builds up its
understanding of images over many layers. Visualizations of all channels are available in the appendix.

Olah, et al., "Feature Visualization", Distill, 2017.




2. What’'sina CNN?

 Feature visualization vs. Dataset Examples

Dataset Examples show
us what neurons respond
to in practice

Optimization isolates the
causes of behavior from
mere correlations. A
neurcn may not be
detecting what you
initially thought.

Baseball—or stripes? Animal faces—aor snouts? Clouds—ar fluffiness?

mixedda, Unit 6 mixedda, Unit 240 mixedda, Unit 453

Olah, et al., "Feature Visualization", Distill, 2017.



2. What’'sina CNN?

* Diversity in feature visualization

Dataset examples have a big advantage here. By looking through our dataset, we can find
diverse examples. It doesn't just give us ones activating a neuron intensely: we can look across

a whole spectrum of activations to see what activates the neuron to different extents.

In contrast, optimization generally gives us just one extremely positive example —and if we're

creative, a very negative example as well. Is there some way that optimization could also give

us this diversity?

pOs 0, ﬁi Ld
balOF) 70
AR Mol

Megative optimized Minimum activation Slightly negative
examples activation examples activation examples examples

Slightly positive Maximum activation Positive optimized

Olah, et al., "Feature Visualization", Distill, 2017.



2. What’'sina CNN?

* Diversity in feature visualization

=> Just add a « diversity term » to the loss

Olah, et al., "Feature Visualization", Distill, 2017.



2. What’'sina CNN?

* Feature visualization vs. attribution

There is a growing sense that neural networks need to be interpretable to humans. The field
of neural network interpretability has formed in response to these concerns. As it matures,

two major threads of research have begun to coalesce: feature visualization and attribution.

Feature visualization answers questions about what a Attribution ' studies what part of an example is

network — or parts of a network — are looking for by responsible for the network activating a particular way.
generating examples.

Olah, et al., "Feature Visualization", Distill, 2017.



2. What’'sina CNN?

e Visualizing the learned weights (not just activations)

=>» This can tell us about the neural « circuits »

@ positive (excitation)
@ negative (inhibition)

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:497)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite

the car detector at the A car detector (4c:447)
bottom and inhibit at is assembled from
the top. aarlier units.

In mixed4c, a mid-late layer of InceptionV1, there is a car detecting neuron. Using features
from the previous layers, it looks for wheels at the bottom of its convolutional window, and

windows at the top.

Olah, et al., "Zoom In: An Introduction to Circuits", Distill, 2020



2. What'sin a CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

InceptionV1

Carter, et al., "Activation Atlas", Distill, 2019

2 o
o -
faces bodies je



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

A randomized set of one million images is fed through the The activations are fed through UMAP to reduce them to We then draw a grid and average the activations that fall
network, collecting one random spatial activation per two dimensions, They are then plotted, with similar within a cell and run feature inversion on the averaged
image. activations placed near each other. activation. We also optionally size the grid cells according

to the density of the number of activations that are
averaged within.

Carter, et al., "Activation Atlas", Distill, 2019




2. What’'sina CNN?

 The big picture: joint encoding and representation at

Mo o~ oW -

Carter, et al., "Activation Atlas", Distill, 2019




2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: animal heads (eyes, fur, nose...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: animal backs (fur, 4-legs...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: animal legs (feet ground...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: types of ground (sand, dune...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: sea (beach, water...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: text (packages, websites...)
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Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at
the level of entire regions (activation atlas)

Zoom on: fruits (mangos, strawberries...)

- 1

Carter, et al., "Activation Atlas", Distill, 2019



2. What’'sina CNN?

 The big picture: joint encoding and representation at

Mo o~ oW -

Carter, et al., "Activation Atlas", Distill, 2019




3. Brain/CNN comparisons

* RSA (representational similarity analysis):
* fMRI
e MEG
 Single-units (Brainscore)

 Case study: CLIP multimodal neurons




3. Brain/CNN comparisons

* RSA (representational similarity analysis):

»*""computational model

(stage-2 representation)
oy P

> g7 Pl resentational dissimilarity
s M (Cd . D°D) matrix
human fMRI SAOES other modalities < sl >

(EEG, MEG, optical imaging elc.)
TR

monkey cell recordings
“ (subject 1, region A)
. M_H'T: v
S 3 i T
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(subject 1, region A)

" human fMRI

{subject 2, ragion A)

e
human fMRI monkey fMRI

Iy  (subject 2, region B) (subject 1, region B) 7 o

Kriegeskorte et al, “Representational similarity analysis - connecting
the branches of systems neuroscience”, Front Sys Neurosci (2008)
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3. Brain/CNN comparisons

* RSA (representational similarity analysis):

animate | inanimate animate | inanimate
not human natural|artificial human |not human natural |artificial
body|face | body|face |body|face

animate | inanimate
human |not human naturjjrtificial

human
body]face

body|face |body|face |
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In these 3 RDMs, there is a monkey, a human, and a DNN. Can you tell which is which?

Khaligh-Razavi & Kriegeskorte, PLoS Comp Biol (2014)



3. Brain/CNN comparisons

* RSA (representational similarity analysis):

“computational model

{stage-2 representalion)

human fMRI ety other modalities
~ B g (EEG, MEG, oplical imaging etc. )

N

(subject 1, region A)

" human fMRI

(subject 2, region A)

/

human fMRI monkey fMRI

(subject 2, region B) (subject 1, region B)




3. Brain/CNN comparisons

* RSA (representational similarity analysis):
* fMRI

a Human inferior temporal cortex
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Khaligh-Razavi & Kriegeskorte, PLoS Comp Biol (2014)



3. Brain/CNN comparisons

* RSA (representational similarity analysis):
* fMRI
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Guclu & van Gerven, J Neurosci (2015)




3. Brain/CNN comparisons

* RSA (representational similarity analysis):
* fMRI

- Tl
DNN-brain
similarity

Layer 1 Layer 2  Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Low

Cichy et al, Sci Reports (2016)




3. Brain/CNN comparisons

* RSA (representational similarity analysis):

¢ fMRI _computational model

{stage-2 representalion)
e MEG '

sdogel e
human fMRI TS other modalities
(subject 1, region A) = g (EEG, MEG, oplical imaging elc.)
4 o J

" human fMRI

(subject 2, region A)

/

human fMRI monkey fMRI

(subject 2, region B) (subject 1, region B)




3. Brain/CNN comparisons

* RSA (representational similarity analysis):

g fM Rl m Convolution = Normalization
= Max-pooling U Fully connected

e MEG
0.25,
d 0.2
e Deep scene network
c , J? object network
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Calculate
Cichy et al, Sci Reports (2016) Spearman's R Cichy & Teng, Phil Trans B (2017)
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3. Brain/CNN comparisons

* RSA (representational similarity analysis):

* fMRI #?*  computational model
o {stage-ﬁi?lpr!-ﬁenlmmnj L
e MEG >
(Ll d L) L)

I - I human fMRI other modalities
 Single-units um TOC  Sther modalities
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3. Brain/CNN comparisons

* RSA (representational similarity analysis):
* fMRI
e MEG
 Single-units

animate | inanimate animi
not human naturallartificial human |not hu

bo_dy|face | body|f
. . S 1 ] d
b e t F.

human

- -
(e o ==

S0 Monkey IT
(n = 168)

50  Monkey V4
(n =128)

- @jewiueul | ajewniue

Single-site neural predictivity
(% explained variance)

w
2
- g, _—E
g3
S < E
bl %)
0
|deal Control HCNN |deal Control HCNN
observers models layers observers models layers

Deep neural network models

Yamins et al, PNAS (2014) Cadieu et al, PLoS Comp Biol. (2014)



3. Brain/CNN comparisons

b Brain—SCOI‘e Leaderboard  About Compare Participate

=>» Brainscore  :ii Bra — cpate
(www.brain-score.org) ‘ \
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3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?

1. Contrastive pre-training This is a GPT

pe pp;ar the Text
aussie pup Encoder 1 l 1 l

)
’ - ‘[J Ir'T? I;"Tz 11'T3 IT'TN
Training:
the contrastive loss
I~ - Iz Iz'TI I2T2 IZTJ IJ'TM

is back-propagated
through both

i
' [ Image
ﬂ- " Encoder — I3 IgTy I3T, 1373~ IgTy models
. / — Iy IvTy InTe InTs InTy
This is a ResNet

P
<

Radford, et al. (openAl), "Learning Transferable Visual Models From Natural Language Supervision ", arXiv 2021.



3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?

2. Create dataset classifier from label text

BN aphotoof N Text
a {object}. Encoder

3. Use for zero-shot prediction

a photo of
adog.

Radford, et al. (openAl), "Learning Transferable Visual Models From Natural Language Supervision ", arXiv 2021.



3. Brain/CNN comparisons
 Case study: CLIP multimodal neurons = concept cells?

Biological Neuron CLIP Neuron Previous Artificial Neuron
Frobed via depth electrodes MNeuron 244 from penultimate layer Meuron 483, generic person

in CLIP RNS0_4x detector from Inception v1
Halle Berry Spiderman human face

Responds to e ; Responds to Responds to faces Photarealistic images
photos of Halle 2 i . photos of 1 of people

Berry and Halle Spiderman in
Berry in costume costume and
spiclers

o View maore

Responds to and Conceptual drawings
comics ar Jnificantly to
drawings of drawings of faces
Spiderman and
spider-themed

v

Responds to
skeches of Halle
= o Berry

|y f ? icons
b oL ;-
o Vigw more
Responds to the v - Responds to the Does not respond Images of text
text "Halle Berry" text "spider” and significantly to text
PUMPK others
Halle Berry AND SPIDERS
AITH ORANGE AND
NATURAL FLAVORS
M
o vigw more

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.




3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?
=> Are these « grandmother » neurons?

Person Neurons

Donald Trump | Elvis Presley Lady Gaga Ariana Grande

Jesus Christ

Hitler

These neurons respond to content associated with with a specific
person. See Person Neurons for detailed disucssion.

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.



3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?

Emotion Neurons

shocked appy sleepy

; Surprise / Shock
serious

These neurons respond to facial expressions, words, and other content
associated with an emotion or mental state. See Emotion Meurons for

detailed discussion,

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.



3. Brain/CNN comparisons
 Case study: CLIP multimodal neurons = concept cells?

Region Neurons

Australia Morth America | Mew York

These neurons respond to content associated with with a geographic
region, with neurons ranging in scope from entire hemispheres to
individual cities. Some of these neurons partially respond to ethnicity,
See Region Neurons for detailed discussion.

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.



3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?

Religion Neurons

E 4 i -1 ==

Judaism Hinduism Catholicism Eible

Islam? Euddhism

These neurons respond to features associated with a specific religion
such as symbols, iconography, buildings, and texts.

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.



3. Brain/CNN comparisons

 Case study: CLIP multimodal neurons = concept cells?

=> Not fully like humans, yet...

. —— _
- 4.., Chihuahua 17.5%

Miniature Pinscher 14.3% _’ pretzel
French Bulldog 7.3% Chihuahua
Griffon Bruxellois 5.7% Target class: broccoli
[talian Greyhaund 4% EEESEEEES hot dog
WWest Highland White Temier 2.1% Attack test: Boston Terrier
Schipperke 2% P French Bulldog

= Ay Maltese 2% S i w spatula
faseke=limem Torrinae e Italiam (Crawkhonondd

2%
1.5%
1.2%
0.6%
0.6%
0.5%
0.4%

(.39

Goh, et al., "Multimodal Neurons in Artificial Neural Networks", Distill, 2021.



4. Other issues on DL biological plausibility

* CNNs are (roughly) biologically plausible:
 Hierarchical structure
e Convolutions
* Receptive fields
e Feature/object selectivity (RSA, BrainScore, concept cells)

» Other aspects of Deep Learning are not:
1. Spikes (vs. continuous/floating point values)
. Adversarial attacks!
Backpropagation (giobally available error signals?)
Visual attention/Transformers (attention control within the feature extraction

hierarchy?)

Feed-forward models (recurrence is not just for text/audio inputs)
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4. Other issues on DL biological plausibility

Fast gradient sign method, Goodfellow et al, 2014

2. Adversarial attacks
original + attack

Orlglnal “attaCk” =“ostrich”

"panda” "gibbon”

57.7% confidence 00.3% confidence

:[,‘r =Tr+e- S'ig‘n[?n:'}(ﬁ}m? y}]

Can be very problematlcforAI

Authentic Adversarial Adversarial
Input Perturbation Input

Szegedyetal, 2013



4. Other issues on DL biological plausibility

Synapse undergoing learning
]
3 B k Feedback signal (e.g. gradient)
o ac propagatlon Feedback neuron (required for learning)
Feedforward neuron (required for learning)

Diffuse scalar reinforcement signal

No feedback  Scalar feedback Vector feedback
% | N ' N | N
Feedforward Hebbian Perturbation Backpropagation Backprop-like learning
network learning learning with feedback network
Output
Q O Yeo—2O o ) e O
QLo 0loo ol |l bS] €& ©® & 00
O 0 O |0 © O . O O |0 ©O 0O Q. @ O ,0 0O
o O \ o O ) o O \_ o O ) o O S O

Input

Lilicrap et al, Nature Reviews Neuroscience 2020



4. Other issues on DL biological plausibility

* CNNs are (roughly) biologically plausible:
 Hierarchical structure
e Convolutions
* Receptive fields
* Feature/object selectivity (RSA, BrainScore , concept cells)

» Other aspects of Deep Learning are not:
1. Spikes (vs. continuous/floating point values)
2. Adversarial attacks!
3. Backpropagation (giobally available error signals?)
4. Visual attention/Transformers (attention control within the feature extraction

hierarchy?)



Visual attention in the brain
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Visual attention in the brain
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u 88 341 304 l320 591 229 |263 575 575
(www.brain-score.org) _
89 mobilenat V1 05 198 a0y a5 a04 550 234 373 563 563
) barlow-twins-resnel>0 [y 579 2ga l57e 285 | 276 001 001
91 VITBIBZ a4y 2e2 lase 49 251 284
92 saueeransli 1 aag 65 311 582 208 291 575 575
moblenet v2_ 035128 a0 45 289 530 235 367 508 508
mobilenel v2 0585 g5y seg o718 501 238 370 512 512
Vision Transformers are not very
close to brain processing
mobilenel v1.0.25 224 faog 5oy o0d |5ad 240 | @33 408 498
deit_base patch16_384 id 394 200 248 515 235 425
VITL3Z a0y 08 301 511 219 286
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resnet18-simclr

ViT_B_ 32 imagenetik

103
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resnet18-local_aggregation

104 314 253 308 563 268 177

Schrimpf, ...Di Carlo, Neuron (2020) 105 VITB92 313 308 275 504 208 270




4. Other issues on DL biological plausibility

* CNNs are (roughly) biologically plausible:
 Hierarchical structure
e Convolutions
* Receptive fields
* Feature/object selectivity (RSA, BrainScore , concept cells)

» Other aspects of Deep Learning are not:
1. Spikes (vs. continuous/floating point values)
. Adversarial attacks!
Backpropagation (giobally available error signals?)
Visual attention/Transformers (attention control within the feature extraction

hierarchy?)

Feed-forward models (recurrence is not just for text/audio inputs)
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4. Other issues on DL biological plausibility

5. Feed-forward models?

Decoder
Primate ventral stream layer

4

Decoder
layer

* May be a good
model for rapid,
automatic vision in
the brain

Feedforward DCNNs

<«— Approximation of retina, LGN, V1, V2, V4 > Approximation

e But not for

conscious/attentive of IT
perception

=

Kar et al, Nat. Neurosci 2019




CONCLUSION

* CNNs are (roughly) biologically plausible:
 Hierarchical structure
e Convolutions
* Receptive fields
e Feature/object selectivity (RSA, BrainScore, concept cells)

» Other aspects of Deep Learning are not:
1. Spikes (vs. continuous/floating point values)
. Adversarial attacks!
Backpropagation (giobally available error signals?)
Visual attention/Transformers (attention control within the feature extraction

hierarchy?)

Feed-forward models (recurrence is not just for text/audio inputs)
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