

Homologies between brains and CNNs

Rufin VanRullen

Outline

1. What's in a brain? Crash course in (visual) neuroscience:

- Cortical Hierarchy
- Receptive fields
- Selectivities (features, object, classes)
- Concept cells
- 2. What's in a CNN? Deepdream, visualization (explainability/interpretability) tools, examples...

3. Brain/CNN comparisons:

- **©** RSA (representational similarity analysis): fMRI, MEG, single-units
- Brainscore
- Case study: CLIP-multimodal

4. Other issues about the biological plausibility of Deep Learning:

- Spikes
- Adversarial attacks
- Backprop
 Backprop
- Attention/transformers
- Recurrence...

- Cortical hierarchy
- Receptive fields

- Cortical hierarchy
- Receptive fields
- Selectivities (features, objects, classes)

- **Cortical hierarchy**
- **Receptive fields**
- Selectivities (features, objects, classes)

How is feature selectivity constructed? Example for an orientation detector (V1)

Retinal ganglion cell receptive fields

- **Cortical hierarchy**
- **Receptive fields**
- Selectivities (features, objects, classes)

Coarse, Directional, Regular Brick Coarse, Directional, Irregular Marble Coarse, Non-directional, Regular Dried flowers Coarse, Non-directional, Irregular

More elaborate selectivities: contours, textures, shapes (V2, V4)

Rock

Paper chip

Snow

Leopard

Expanded mica Wood grain

Kim, Bair & Pasupathy, J Neurosci (2019)

- Cortical hierarchy
- Receptive fields
- Selectivities (features, objects, classes)

Even more elaborate selectivities: object parts, shapes, classes (IT)

Tanaka, Annual Rev. Neurosci (1996)

- Cortical hierarchy
- Receptive fields
- Selectivities (features, objects, classes)

The big picture

Beyond single-unit preferences: population-level representations (IT)

Charest et al, PNAS (2014)

- Cortical hierarchy
- Receptive fields
- Selectivities (features, objects, classes)

Still more elaborate selectivities: concept cells (Hippocampus) →Are these « grandmother » neurons?

The "Jennifer Aniston neuron".

(seconds)

ð

(seconds)

halle

Quiroga, Reddy et al, Nature (2005)

- Cortical hierarchy
- Receptive fields
- Selectivities (features, objects, classes)
- Concept cells

• Hierarchical structure

Convolutiono I Decentivo Fieldo			InceptionV3	layer	RF size
	olutions + Receptiv	e rieius		Conv2d_1a_3x3	3
				Conv2d_2a_3x3	7
		Resnet50		Conv2d_2b_3x3	11
483x483		layer	RF size	MaxPool_3a_3x3	15
		resnet_v1_50/block1		Conv2d_3b_1x1	15
			35	Conv2d_4a_3x3	23
		resnet_v1_50/block2		MaxPool_5a_3x3	31
			99	Mixed_5b	63
	ImageNet: 224x224 pixels	resnet_v1_50/block3	201	Mixed_5c	95
	□ 3x3 35x35		291	Mixed_5d	127
		resnet v1 50/block4	483	Mixed_6a	159
				Mixed_6b	351
				Mixed_6c	543
				Mixed_6d	735
				Mixed_6e	927
				Mixed_7a	1055
				Mixed_7b	1183
				Mixed_7c	1311

• CNNs are (roughly) biologically plausible:

- Hierarchical structure
- Convolutions
- Receptive fields
- Feature/object selectivity?

• How to peek within the black box?

• Deepdream

• How to peek within the black box?

• Deepdream – across layers of GoogleNet

• How to peek within the black box?

- How does Deepdream (and feature visualization) work?
- → Gradient descent on image (starting from noise, or from a given image)
- → with a neuron/channel/layer activation as the objective function to maximize
- → possibly with priors/regularization to impose constraints on images

Starting from random noise, we optimize an image to activate a particular neuron (layer mixed4a, unit 11).

• How to peek within the black box?

- How does Deepdream (and feature visualization) work?
- → Gradient descent on image (starting from noise, or from a given image)
- → with a neuron/channel/layer activation as the objective function to maximize
- → possibly with priors/regularization to impose constraints on images

• How to peek within the black box?

- How does Deepdream (and feature visualization) work?
- → Gradient descent on image (starting from noise, or from a given image)
- → with a neuron/channel/layer activation as the objective function to maximize
- → possibly with priors/regularization to impose constraints on images

No regularization

Step 1

Step 32

Step 128

Step 256

Step 2048

Weak Regularization avoids

Strong Regularization gives

more realistic examples at risk misleading correlations, but is of misleading correlations. less connected to real use. Unregularized Frequency Transformation Learned Dataset Penalization Robustness Prior Examples Erhan, et al., 2009 [3] Introduced core idea. Minimal regularization. Szegedy, et al., 2013 [11] Adversarial examples. Visualizes with dataset examples. Mahendran & Vedaldi, 2015 [7] Introduces total variation regularizer. Reconstructs input from representation. Nguyen, et al., 2015 [14] Explores counterexamples. Introduces image blurring. Mordvintsev, et al., 2015 [4] Introduced jitter & multi-scale. Explored GMM priors for classes. Øygard, et al., 2015 [15] Introduces gradient blurring. (Also uses jitter.) Tyka, et al., 2016 [16] Regularizes with bilateral filters. (Also uses jitter.) Mordvintsev, et al., 2016 [17] Normalizes gradient frequencies. (Also uses jitter.) Nguyen, et al., 2016 [18] Paramaterizes images with GAN generator. Nguyen, et al., 2016 [10] Uses denoising autoencoder prior to make a generative model.

• How to peek within the black box?

(Every image in this section can be reproduced with the notebooks available at https://github.com/tensorflow/lucid) (I also strongly recommend exploring some pre-computed visualizations at https://microscope.openai.com/models)

Feature Visualization

How neural networks build up their understanding of images

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet[2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the <u>appendix</u>.

• Feature visualization vs. Dataset Examples

Dataset Examples show us what neurons respond to in practice

causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Baseball-or stripes? mixed4a, Unit 6

Animal faces-or snouts? mixed4a, Unit 240

Clouds-or fluffiness? mixed4a, Unit 453

Buildings-or sky? mixed4a, Unit 492

• Diversity in feature visualization

Dataset examples have a big advantage here. By looking through our dataset, we can find diverse examples. It doesn't just give us ones activating a neuron intensely: we can look across a whole spectrum of activations to see what activates the neuron to different extents.

In contrast, optimization generally gives us just one extremely positive example — and if we're creative, a very negative example as well. Is there some way that optimization could also give us this diversity?

Negative optimized

Minimum activation examples

Slightly negative activation examples

Slightly positive activation examples

Maximum activation examples

Positive optimized

• Diversity in feature visualization

 \rightarrow Just add a « diversity term » to the loss

Simple Optimization

Optimization with diversity reveals multiple types of balls. Layer mixed5a, Unit 9

• Feature visualization vs. attribution

There is a growing sense that neural networks need to be interpretable to humans. The field of neural network interpretability has formed in response to these concerns. As it matures, two major threads of research have begun to coalesce: feature visualization and attribution.

Feature visualization answers questions about what a network — or parts of a network — are looking for by generating examples.

Attribution ¹ studies what part of an example is responsible for the network activating a particular way.

• Visualizing the learned weights (not just activations)

→ This can tell us about the neural « circuits »

In mixed4c, a mid-late layer of InceptionV1, there is a car detecting neuron. Using features from the previous layers, it looks for wheels at the bottom of its convolutional window, and windows at the top.

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

A randomized set of one million images is fed through the network, collecting one random spatial activation per image. The activations are fed through UMAP to reduce them to two dimensions. They are then plotted, with similar activations placed near each other. We then draw a grid and average the activations that fall within a cell and run feature inversion on the averaged activation. We also optionally size the grid cells according to the density of the number of activations that are averaged within.

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: animal heads (eyes, fur, nose...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: animal backs (fur, 4-legs...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: animal legs (feet, ground...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: types of ground (sand, dune...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: sea (beach, water...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: text (packages, websites...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

Zoom on: fruits (mangos, strawberries...)

• The big picture: joint encoding and representation at the level of entire regions (activation atlas)

- RSA (representational similarity analysis):
 - fMRI
 - MEG
 - Single-units (Brainscore)
- Case study: CLIP multimodal neurons

• RSA (representational similarity analysis):

• RSA (representational similarity analysis):

In these 3 RDMs, there is a monkey, a human, and a DNN. Can you tell which is which?

• RSA (representational similarity analysis):

- RSA (representational similarity analysis):
 - fMRI

Khaligh-Razavi & Kriegeskorte, PLoS Comp Biol (2014)

- RSA (representational similarity analysis):
 - fMRI

Guclu & van Gerven, J Neurosci (2015)

- RSA (representational similarity analysis):
 - fMRI

Cichy et al, Sci Reports (2016)

• RSA (representational similarity analysis):

RSA (representational similarity analysis):

Cichy & Teng, Phil Trans B (2017)

- RSA (representational similarity analysis):
 - fMRI
 - MEG
 - Single-units

• RSA (representational similarity analysis):

Yamins et al, PNAS (2014)

Cadieu et al, PLoS Comp Biol. (2014)

→ Brainscore (www.brain-score.org)

Rank

1

2

3

4

5

Brai	Brain-Score	Leaderboa	ard	About	t Co	mpare	Part	icipate		cipate
Ran	k Model submitted by	4 3VOS	8 ⁰⁶	21	v2	No 100 100	anotimati	enavior 1	sectional tercimat	·
1	CORnet-S Brain-Score Team	.417	.294	.242	.581	.423	.545	.747	.747	5
2	vgg-19 Brain-Score Team	.408	.347	.341	.610	.248	.494	.711	.711	amaria
3	resnet-50-robust Joel Dapello	.408	.378	.365	.537	.243	.515			navio
4	resnet-101_v1 Brain-Score Team	.407	.266	.341	.590	.274	.561	.764	.764	5,
5	vgg-16 Brain-Score Team	.406	.355	.336	.620	.259	.461	.715	.715	
6	resnet-152_v1 Brain-Score Team	.405	.282	.338	.598	.277	.533	.768	.768	
7	resnet-101_v2 Brain-Score Team	.404	.274	.332	.599	.263	.555	.774	.774	
8	resnet50-SIN_IN Brain-Score Team	.404	.282	.324	.599	.276	.541	.746	.746	
9	densenet-169 Brain-Score Team	.404	.281	.322	.601	.274	.543	.759	.759	
10	densenet-201 Brain-Score Team	.402	.277	.325	.599	.273	.537	.772	.772	
11	resnet-50-pytorch Joel Dapello	.399	.289	.317	.600	.259	.528	.752	.752	
12	resnet-50_v1 Brain-Score Team	.398	.274	.317	.594	.278	.526	.752	.752	
13	resnet50-SIN_IN_IN Brain-Score Team	.397	.275	.321	.596	.273	.523	.767	.767	
14	resnet-152_v2 Brain-Score Team	.397	.274	.326	.591	.266	.528	.778	.778	
15	resnet-50_v2	.396	.270	.323	.596	.260	.531	.756	.756	

1 benchmalt

Schrimpf, ... Di Carlo, Neuron (2020)

• Case study: CLIP multimodal neurons = concept cells?

Radford, et al. (openAl), "Learning Transferable Visual Models From Natural Language Supervision ", arXiv 2021.

• Case study: CLIP multimodal neurons = concept cells?

2. Create dataset classifier from label text

Radford, et al. (openAl), "Learning Transferable Visual Models From Natural Language Supervision ", arXiv 2021.

• Case study: CLIP multimodal neurons = concept cells?

Biological Neu	Biological Neuron		CLIP Neuron		Previous Artificial Neuron				
Probed via depth	electrodes	Neuron 244 from in CLIP RN50_4x	penultimate layer	Neuron 483, gen detector from Inc	eric person ception v1				
Halle Berry		Spiderman		human face					
C all	Responds to photos of Halle Berry and Halle Berry in costume √	o view more	Responds to photos of Spiderman in costume and spiders		Responds to faces of people ✓	Photorealistic images			
	Responds to skeches of Halle Berry √	o view more	Responds to comics or drawings of Spiderman and spider-themed icons		Does not respond significantly to drawings of faces ×	Conceptual drawings			
Halle Berry	Responds to the text "Halle Berry" √	S PUMPKINS. S AND SPIDERS NITH ORANGE AND NATURAL FLAVORS	Responds to the text "spider" and others √		Does not respond significantly to text ×	Images of text			

• Case study: CLIP multimodal neurons = concept cells?

→ Are these « grandmother » neurons?

Person Neurons

Donald Trump

Elvis Presley

Lady Gaga

Jesus Christ

Hide 1 neuron.

These neurons respond to content associated with with a specific person. See <u>Person Neurons</u> for detailed disucssion.

Ariana Grande

Hitler

Case study: CLIP multimodal neurons = concept cells?

Emotion Neurons

shocked

sleepy

serious

Hide 1 neuron.

These neurons respond to facial expressions, words, and other content associated with an emotion or mental state. See Emotion Neurons for detailed discussion.

Surprise / Shock

• Case study: CLIP multimodal neurons = concept cells?

Region Neurons

West Africa?

Hide 3 neurons.

These neurons respond to content associated with with a geographic region, with neurons ranging in scope from entire hemispheres to individual cities. Some of these neurons partially respond to ethnicity. See <u>Region Neurons</u> for detailed discussion.

• Case study: CLIP multimodal neurons = concept cells?

These neurons respond to features associated with a specific religion, such as symbols, iconography, buildings, and texts.

Case study: CLIP multimodal neurons = concept cells? → Not fully like humans, yet...

Chihuahua	17.5%
Miniature Pinscher	14.3%
French Bulldog	7.3%
Griffon Bruxellois	5.7%
Italian Greyhound	4%
West Highland White Terrier	2.1%
Schipperke	2%
Maltese	2%
Australian Terrier	1 99%

\longrightarrow	stig
Target class: pizza	piz:
Attack text: <i>pizza</i>	

Reco damage	pizza	83.7%
pizza	pretzel	2%
izza	Chihuahua	1.5%
pizza	broccoli	1.2%
pizza pizza pizza pizza	hot dog	0.6%
	Boston Terrier	0.6%
	French Bulldog	0.5%
a series and	spatula	0.4%
and the second second	Italian Greybound	0.3%

• CNNs are (roughly) biologically plausible:

- Hierarchical structure
- Convolutions
- Receptive fields
- Feature/object selectivity (RSA, BrainScore, concept cells)

• Other aspects of Deep Learning are not:

- **1. Spikes** (vs. continuous/floating point values)
- 2. Adversarial attacks!
- **3. Backpropagation** (globally available error signals?)
- **4. Visual attention/Transformers** (Attention control within the feature extraction hierarchy?)
- 5. Feed-forward models (recurrence is not just for text/audio inputs)

2. Adversarial attacks

Szegedy et al, 2013

Fast gradient sign method, Goodfellow et al, 2014

"panda" 57.7% confidence

"gibbon" 99.3% confidence

 $x' = x + \epsilon \cdot sign(\bigtriangledown_x J(\theta, x, y))$

Can be very problematic for AI

Synapse undergoing learning -0-3. Backpropagation Feedback signal (e.g. gradient) Feedback neuron (required for learning) Feedforward neuron (required for learning) Diffuse scalar reinforcement signal No feedback Scalar feedback Vector feedback Hebbian Feedforward Perturbation Backpropagation Backprop-like learning with feedback network network learning learning Output Input

• CNNs are (roughly) biologically plausible:

- Hierarchical structure
- Convolutions
- Receptive fields
- Feature/object selectivity (RSA, BrainScore, concept cells)

• Other aspects of Deep Learning are not:

- **1. Spikes** (vs. continuous/floating point values)
- 2. Adversarial attacks!
- **3. Backpropagation** (globally available error signals?)
- **4. Visual attention/Transformers** (Attention control within the feature extraction hierarchy?)

Visual attention in the brain

Visual attention in the brain

resnet18-local_aggregation

Chengxu Zhuang

VIT B 32

Paul Mc Grath

104

105

About Compare Participate

.588 .588

.575 .575

.563 .563

.001 .001

.575 .575

.512 .512

.508 .508

498 .498

.477 .477

.470 .470

367

344

Brain-Score Leaderboard → Brainscore mobilenet_v2_0.75_96 87 Brain-Score Team squeezenet1 0 88 (www.brain-score.org) Brain-Score Team mobilenet_v1_0.5_128 89 Brain-Score Team barlow-twins-resnet50 90 Eric Elmoznino ViT-B/32 91 Violet Xiang squeezenet1 1 92 Brain-Score Team mobilenet v2 0.35 128 93 Brain-Score Team mobilenet v2 0.5 96 94 Brain-Score Team Vision Transformers are not very **RN50** 95 Violet Xiang close to brain processing ViT L 32 imagenet1k 96 Paul Mc Grath mobilenet v1 0.25 224 Brain-Score Team deit base patch16 384 id 98 Violet Xiang VIT L 32 99 Paul Mc Grath mobilenet v1 0.25 192 100 Brain-Score Team CORnet-Z 101 Brain-Score Team resnet18-simclr 102 Chengxu Zhuang ViT B 32 imagenet1k 103 Paul Mc Grath

Schrimpf, ... Di Carlo, Neuron (2020)

• CNNs are (roughly) biologically plausible:

- Hierarchical structure
- Convolutions
- Receptive fields
- Feature/object selectivity (RSA, BrainScore, concept cells)

• Other aspects of Deep Learning are not:

- **1. Spikes** (vs. continuous/floating point values)
- 2. Adversarial attacks!
- **3. Backpropagation** (globally available error signals?)
- **4. Visual attention/Transformers** (Attention control within the feature extraction hierarchy?)
- 5. Feed-forward models (recurrence is not just for text/audio inputs)

5. Feed-forward models?

- May be a good model for rapid, automatic vision in the brain
- But not for conscious/attentive perception

Kar et al, Nat. Neurosci 2019

CONCLUSION

• CNNs are (roughly) biologically plausible:

- Hierarchical structure
- Convolutions
- Receptive fields
- Feature/object selectivity (RSA, BrainScore, concept cells)

• Other aspects of Deep Learning are not:

- **1. Spikes** (vs. continuous/floating point values)
- 2. Adversarial attacks!
- **3. Backpropagation** (globally available error signals?)
- **4. Visual attention/Transformers** (Attention control within the feature extraction hierarchy?)
- 5. Feed-forward models (recurrence is not just for text/audio inputs)

...